
Learn	to	use
QuantConnect
and	Explore
Features

	

LEAN	ENGINE

Radically	open-source	
algorithmic	trading	
engine
Multi-asset	with	full	portfolio	modeling,	
LEAN	is	data	agnostic,	empowering	you	
to	explore	faster	than	ever	before.

	

Table	of	Content

1	Getting	Started

2	Contributions

2.1	Datasets

2.1.1	Key	Concepts

2.1.2	Defining	Data	Models

2.1.3	Rendering	Data

2.1.3.1	Rendering	Data	with	Python

2.1.3.2	Rendering	Data	with	CSharp

2.1.3.3	Rendering	Data	with	Notebooks

2.1.4	Testing	Data	Models

2.1.5	Data	Documentation

2.2	Brokerages

2.2.1	Setting	Up	Your	Environment

2.2.2	Laying	the	Foundation

2.2.3	Creating	the	Brokerage

2.2.4	Translating	Symbol	Conventions

2.2.5	Describing	Brokerage	Limitations

2.2.6	Enabling	Live	Data	Streaming

2.2.7	Enabling	Historical	Data

2.2.8	Downloading	Data

2.2.9	Modeling	Fee	Structures

2.2.10	Updating	the	Algorithm	API

3	Statistics

3.1	Capacity

4	Class	Reference

	

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.3
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.3.1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.3.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.3.3
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.4
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.5
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.3
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.4
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.5
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.6
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.7
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.8
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.9
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.10
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#3
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#3.1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#4

Getting	Started

Getting	Started

Introduction

Lean	Engine	is	an	open-source	algorithmic	trading	engine	built	for	easy	strategy	research,	backtesting	and	live	trading.

We	integrate	with	common	data	providers	and	brokerages	so	you	can	quickly	deploy	algorithmic	trading	strategies.

The	core	of	the	LEAN	Engine	is	written	in	C#;	but	it	operates	seamlessly	on	Linux,	Mac	and	Windows	operating

systems.	It	supports	algorithms	written	in	Python	3.8	or	C#.	Lean	drives	the	web-based	algorithmic	trading	platform

QuantConnect	.

System	Overview

The	Engine	is	broken	into	many	modular	pieces	which	can	be	extended	without	touching	other	files.	The	modules	are

configured	in	 	as	set	"environments".	Through	these	environments,	you	can	control	LEAN	to	operate	in	the

mode	required.

The	most	important	plugins	are:

Result	Processing

An	 	that	handle	all	messages	from	the	algorithmic	trading	engine.	Decide	what	should	be	sent,	and

where	the	messages	should	go.	The	result	processing	system	can	send	messages	to	a	local	GUI,	or	the	web	interface.

Datafeed	Sourcing

An	 	that	connect	and	download	the	data	required	for	the	algorithmic	trading	engine.	For	backtesting	this

sources	files	from	the	disk,	for	live	trading,	it	connects	to	a	stream	and	generates	the	data	objects.

https://www.quantconnect.com/

Transaction	Processing

An	 	that	process	new	order	requests;	either	using	the	fill	models	provided	by	the	algorithm	or	with

an	actual	brokerage.	Send	the	processed	orders	back	to	the	algorithm's	portfolio	to	be	filled.

Realtime	Event	Management

An	 	that	generate	real-time	events	-	such	as	the	end	of	day	events.	Trigger	callbacks	to	real-time	event

handlers.	For	backtesting,	this	is	mocked-up	to	work	on	simulated	time.

Algorithm	State	Setup

An	 	that	configure	the	algorithm	cash,	portfolio	and	data	requested.	Initialize	all	state	parameters

required.

These	are	all	configurable	from	the	 	file	in	the	 	Project.

Developing	with	Lean	CLI

QuantConnect	recommends	using	Lean	CLI	for	local	algorithm	development.	This	is	because	it	is	a	great	tool	for

working	with	your	algorithms	locally	while	still	being	able	to	deploy	to	the	cloud	and	have	access	to	Lean	data.	It	is	also

able	to	run	algorithms	on	your	local	machine	with	your	data	through	our	official	docker	images.

Reference	QuantConnects	documentation	on	Lean	CLI	here	.

Installation	Instructions

This	section	will	cover	how	to	install	lean	locally	for	you	to	use	in	your	own	environment.

Refer	to	the	following	readme	files	for	a	detailed	guide	regarding	using	your	local	IDE	with	Lean:

VS	Code

VS

To	install	locally,	download	the	zip	file	with	the	latest	master	and	unzip	it	to	your	favorite	location.	Alternatively,	install

Git	and	clone	the	repo:

Mac	OS

1.	 Install	Visual	Studio	for	Mac

2.	 Open	 	in	Visual	Studio

Visual	Studio	will	automatically	start	to	restore	the	Nuget	packages.	If	not,	in	the	menu	bar,

1.	 click	

2.	 In	the	menu	bar,	click	

Alternatively,	run	the	compiled	 	file:

1.	 click	

2.	 run	the	following	code:

https://github.com/QuantConnect/lean-cli
https://www.quantconnect.com/docs/v2//lean-cli/key-concepts/getting-started
https://github.com/QuantConnect/Lean/blob/master/.vscode/readme.md
https://github.com/QuantConnect/Lean/blob/master/.vs/readme.md
https://github.com/QuantConnect/Lean/archive/master.zip
https://git-scm.com/downloads
https://www.visualstudio.com/vs/visual-studio-mac/

Linux	(Debian,	Ubuntu)

1.	 Install	dotnet	6

2.	 Compile	Lean	Solution

3.	 Run	Lean

To	set	up	Interactive	Brokers	integration,	make	sure	you	fix	the	 	and	 	fields	in	the

	file	with	the	actual	paths	to	the	TWS	and	the	IBController	folders	respectively.	If	after	all	you	still	receive

connection	refuse	error,	try	changing	the	 	field	in	the	 	file	from	4002	to	4001	to	match	the	settings

in	your	IBGateway/TWS.

Windows

1.	 Install	Visual	Studio

2.	 Open	 	in	Visual	Studio

3.	 Build	the	solution	by	clicking	

4.	 Press	 	to	run

Python	Support

A	full	explanation	of	the	Python	installation	process	can	be	found	in	the	Algorithm.Python	project.

Local-Cloud	Hybrid	Development

Seamlessly	develop	locally	in	your	favorite	development	environment,	with	full	autocomplete	and	debugging	support	to

quickly	and	easily	identify	problems	with	your	strategy.	For	more	information	please	see	the	CLI	documentation	.

Roadmap

Our	Roadmap	shows	the	feature	requests	and	bugs	that	receive	the	most	attention	from	community	members.	The	core

QuantConnect	team	gives	priority	to	the	feature	requests	and	bugs	that	have	the	most	votes.	If	you	want	to	shape	the

future	of	QuantConnect	and	LEAN,	vote	today.	To	add	a	new	item	to	the	roadmap,	create	a	new	GitHub	Issue	on	the

LEAN	repository	and	then	react	to	it	with	a	thumbs	up	emoji.

Sponsorships

Sponsor	QuantConnect	to	support	our	developers	as	we	improve	a	revolutionary	quantitative	trading	platform	LEAN,	in

an	open,	collaborative	way.	We	will	continue	to	level	the	playing	field	with	industry-grade	tools	and	data	accessibility.

We	use	sponsorship	funds	to	achieve	the	following	goals:

To	continue	the	development	of	LEAN’s	infrastructure

https://docs.microsoft.com/en-us/dotnet/core/install/linux
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://github.com/QuantConnect/Lean/tree/master/Algorithm.Python#quantconnect-python-algorithm-project
https://www.quantconnect.com/docs/v2//lean-cli
https://www.quantconnect.com/roadmap
https://github.com/QuantConnect/Lean/issues/new

To	create	free,	high-quality	research	and	educational	material

To	provide	continued	support	for	our	community

To	make	terabytes	of	data	accessible	in	the	Dataset	Market

To	bring	LEAN	to	global	financial	markets

To	increase	live	trading	brokerage	connections

To	connect	more	individuals	with	financial	institutions	so	individuals	can	gain	income	for	their	ideas	at	scale

To	become	a	QuantConnect	sponsor,	see	the	Sponsorship	page	on	GitHub.

	

https://github.com/sponsors/QuantConnect

Contributions

Contributions

Contributions	>	Datasets

Contributions
Datasets

Contributions	>	Datasets	>	Key	Concepts

Datasets
Key	Concepts

Introduction

Listing	Process

Datasets	contributed	to	LEAN	can	be	quickly	listed	in	the	QuantConnect	Dataset	Marketplace,	and	distributed	for	sale

to	more	than	250,000	users	in	the	QuantConnect	community.	To	list	a	dataset,	reach	out	to	the	QuantConnect	Team	for

a	quick	review,	then	proceed	with	the	data	creation	and	process	steps	in	the	following	pages.

Datasets	must	be	well	defined,	with	realistic	timestamps	for	when	the	data	was	available	("point	in	time").	Ideally

datasets	need	at	least	a	2	year	track	record	and	to	be	maintained	by	a	reputable	company.	They	should	be	accompanied

with	full	documentation	and	code	examples	so	the	community	can	harness	the	data.

Data	Sources

The	 	method	of	your	dataset	class	instructs	LEAN	where	to	find	the	data.	This	method	must	return	a

SubscriptionDataSource	object,	which	contains	the	data	location	and	format.	We	host	your	data,	so	the	

must	be	 	and	the	 	must	be	 	.

TimeZones

The	 	method	of	your	data	source	class	declares	the	time	zone	of	your	dataset.	This	method	returns	a

NodaTime	.DateTimeZone	object.	If	your	dataset	provides	trading	data	and	universe	data,	the	 	methods	in

your	Lean.DataSource.<vendorNameDatasetName>	/	<vendorNameDatasetName>.cs	and	Lean.DataSource.

<vendorNameDatasetName>	/	<vendorNameDatasetName>Universe.cs	files	must	be	the	same.

Linked	Datasets

Your	dataset	is	linked	if	any	of	the	following	statements	are	true:

Your	dataset	describes	market	price	properties	of	specific	securities	(for	example,	the	closing	price	of	AAPL).

Your	alternative	dataset	is	linked	to	individual	securities	(for	example,	the	Wikipedia	page	view	count	of	AAPL).

Examples	of	unlinked	datasets	would	be	the	weather	of	New	York	City,	where	data	is	not	relevant	to	a	specific	security.

https://www.quantconnect.com/contact
https://www.lean.io/docs/v2/lean-engine/class-reference/classQuantConnect_1_1Data_1_1SubscriptionDataSource.html
https://nodatime.org/

When	a	dataset	is	linked,	it	needs	to	be	mapped	to	underlying	assets	through	time.	The	 	boolean

instructs	LEAN	to	handle	the	security	and	ticker	mapping	issues.

	

Contributions	>	Datasets	>	Defining	Data	Models

Datasets
Defining	Data	Models

Introduction

This	page	explains	how	to	set	up	the	data	source	SDK	and	use	it	to	create	data	models.

Part	1/	Set	up	SDK

Follow	these	steps	to	create	a	repository	for	your	dataset:

1.	 Open	the	Lean.DataSource.SDK	repository	and	click	Use	this	template	>	Create	a	new	repository	.

Start	with	the	SDK	repository	instead	of	existing	data	source	implementations	because	we	periodically	update	the

SDK	repository.

2.	 On	the	Create	a	new	repository	from	Lean.DataSource.SDK	page,	set	the	repository	name	to	Lean.DataSource.

<vendorNameDatasetName>	(for	example,	Lean.DataSource.XYZAirlineTicketSales).

If	your	dataset	contains	multiple	series,	use	<vendorName>	instead	of	<vendorNameDatasetName>	.	For

instance,	the	Federal	Reserve	Economic	Data	(FRED)	dataset	repository	has	the	name	Lean.DataSource.FRED

because	it	has	many	different	series	.

3.	 Click	Create	repository	from	template	.

4.	 Clone	the	Lean.DataSource.<vendorNameDatasetName>	repository.

5.	 If	you're	on	a	Linux	terminal,	in	your	Lean.DataSource.<vendorNameDatasetName>	directory,	change	the	access

permissions	of	the	bash	script.

6.	 In	your	Lean.DataSource.<vendorNameDatasetName>	directory,	run	the	renameDataset.sh	bash	script.	

https://github.com/QuantConnect/Lean.DataSource.SDK
https://github.com/QuantConnect/Lean.DataSource.FRED
https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/fred/us-federal-reserve-(fred)#06-Supported-Datasets
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository

The	bash	script	replaces	some	placeholder	text	in	the	Lean.DataSource.<vendorNameDatasetName>	directory

and	renames	some	files	according	to	your	dataset's	<vendorNameDatasetName>.

Part	2/	Create	Data	Models

The	input	to	your	model	should	be	one	or	many	CSV	files	that	are	in	chronological	order.

If	you	don't	already	have	these	CSV	files,	you'll	create	them	later	during	the	Rendering	Data	part	of	this	tutorial	series.

For	this	part	of	the	contribution	process,	consider	using	a	"toy	example"	file	to	establish	the	format	and	requirements.

Follow	these	steps	to	define	the	data	source	class:

1.	 Open	the	Lean.DataSource.<vendorNameDatasetName>	/	<vendorNameDatasetName>.cs	file.

2.	 Follow	these	steps	to	define	the	properties	of	your	dataset:

1.	 Duplicate	lines	32-36	for	as	many	properties	as	there	are	in	your	dataset.

2.	 Rename	the	 	properties	to	the	names	of	your	dataset	properties	(for	example,	

).

3.	 If	your	dataset	is	a	streaming	dataset	like	the	Benzinga	News	Feed	,	change	the	argument	that	is	passed	to

the	 	members	so	that	they	start	at	10	and	increment	by	one	for	each	additional	property	in	your

dataset.

4.	 If	your	dataset	isn't	a	streaming	dataset,	delete	the	 	property	decorators.

5.	 Replace	the	“Some	custom	data	property”	comments	with	a	description	of	each	property	in	your	dataset.

3.	 If	your	dataset	contains	multiple	series,	like	the	FRED	dataset	,	create	a	helper	class	file	in	Lean.DataSource.

<vendorNameDatasetName>	directory	to	map	the	series	name	to	the	series	code.	For	a	full	example,	see	the

LIBOR.cs	file	in	the	Lean.DataSource.FRED	repository.	The	helper	class	makes	it	easier	for	members	to	subscribe

to	the	series	in	your	dataset	because	they	don't	need	to	know	the	series	code.	For	instance,	you	can	subscribe	to

the	1-Week	London	Interbank	Offered	Rate	(LIBOR)	based	on	U.S.	Dollars	with	the	following	code	snippet:

4.	 Define	the	GetSource	method	to	point	to	the	path	of	your	dataset	file(s).

If	your	dataset	is	organized	across	multiple	CSV	files,	use	the	 	string	to	build	the	file	path.

	is	the	string	value	of	the	argument	you	pass	to	the	AddData	method	when	you	subscribe	to

the	dataset.	An	example	output	file	path	is	/	output	/	alternative	/	xyzairline	/	ticketsales	/	dal.csv	.

https://www.quantconnect.com/datasets/benzinga-news-feed
https://www.quantconnect.com/datasets/us-federal-reserve-economic-data
https://github.com/QuantConnect/Lean.DataSource.FRED/blob/master/LIBOR.cs
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1
https://www.quantconnect.com/docs/v2/writing-algorithms/initialization#08-Add-Data

5.	 Define	the	 	method	to	return	instances	of	your	dataset	class.

Set	 	and	set	 	to	the	time	that	the	datapoint	first	became	available	for	consumption.

Your	data	class	inherits	from	the	 	class,	which	has	 	and	 	properties.	Set	the	 	property	to

one	of	the	factors	in	your	dataset.	If	you	don't	set	the	 	property,	its	default	value	is	the	value	of	 	.	For

more	information	about	the	 	and	 	properties,	see	Periods	.

6.	 Define	the	DataTimeZone	method.

If	you	import	 	,	the	 	class	provides	helper	attributes	to	create	 	objects.

For	example,	you	can	use	 	or	 	.	For	more	information	about	time	zones,	see	Time

Zones	.

7.	 Define	the	 	method.

The	 	enumeration	has	the	following	members:

8.	 Define	the	 	method.

If	a	member	doesn't	specify	a	resolution	when	they	subscribe	to	your	dataset,	Lean	uses	the	 	.

9.	 Define	the	 	method.

If	your	dataset	is	not	tick	resolution	and	your	dataset	is	missing	data	for	at	least	one	sample,	it's	sparse.	If	your

dataset	is	sparse,	we	disable	logging	for	missing	files.

https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/periods
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1
https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/time-zones

10.	 Define	the	RequiresMapping	method.

11.	 Define	the	 	method.

12.	 Define	the	 	method.

Part	3/	Create	Universe	Models

If	your	dataset	doesn't	provide	universe	data,	follow	these	steps:

1.	 Delete	the	Lean.DataSource.<vendorNameDatasetName>	/	<vendorNameDatasetName>Universe.cs	.

2.	 Delete	the	Lean.DataSource.<vendorNameDatasetName>	/

<vendorNameDatasetName>UniverseSelectionAlgorithm.*	files.

3.	 In	the	Lean.DataSource.<vendorNameDatasetName>	/	tests	/	Tests.csproj	file,	delete	the	code	on	line	8	that

compiles	the	universe	selection	algorithms.

4.	 Skip	the	rest	of	this	page.

The	input	to	your	model	should	be	many	CSV	files	where	the	first	column	is	the	security	identifier	and	the	second

column	is	the	point-in-time	ticker.

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1
https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/security-identifiers

Follow	these	steps	to	define	the	data	source	class:

1.	 Open	the	Lean.DataSource.<vendorNameDatasetName>	/	<vendorNameDatasetName>Universe.cs	file.

2.	 Follow	these	steps	to	define	the	properties	of	your	dataset:

1.	 Duplicate	lines	33-36	or	38-41	(depending	on	the	data	type)	for	as	many	properties	as	there	are	in	your

dataset.

2.	 Rename	the	 	/	 	properties	to	the	names	of	your	dataset	properties	(for

example,	 	/).

3.	 Replace	the	“Some	custom	data	property”	comments	with	a	description	of	each	property	in	your	dataset.

3.	 Define	the	GetSource	method	to	point	to	the	path	of	your	dataset	file(s).

Use	the	 	parameter	as	the	file	name	to	get	the	 	of	data	being	requested.	Example	output	file	paths	are

/	output	/	alternative	/	xyzairline	/	ticketsales	/	universe	/	20200320.csv	for	daily	data	and	/	output	/	alternative	/

xyzairline	/	ticketsales	/	universe	/	2020032000.csv	for	hourly	data.	

4.	 Define	the	 	method	to	return	instances	of	your	universe	class.

The	first	column	in	your	data	file	must	be	the	security	identifier	and	the	second	column	must	be	the	point-in-time

ticker.	With	this	configuration,	use	 	to	create	the	security

	.

The	date	in	your	data	file	must	be	the	date	that	the	data	point	is	available	for	consumption.	With	this	configuration,

set	the	 	to	 	.

5.	 Define	the	DataTimeZone	method.

If	you	import	 	,	the	 	class	provides	helper	attributes	to	create	 	objects.

For	example,	you	can	use	 	or	 	.	For	more	information	about	time	zones,	see	Time

Zones	.

6.	 Define	the	 	method.

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1
https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/time-zones

Universe	data	must	have	hour	or	daily	resolution.

The	 	enumeration	has	the	following	members:

7.	 Define	the	 	method.

If	a	member	doesn't	specify	a	resolution	when	they	subscribe	to	your	dataset,	Lean	uses	the	 	.

8.	 Define	the	 	method.

If	your	dataset	is	not	tick	resolution	and	your	dataset	is	missing	data	for	at	least	one	sample,	it's	sparse.	If	your

dataset	is	sparse,	we	disable	logging	for	missing	files.

9.	 Define	the	RequiresMapping	method.

10.	 Define	the	 	method.

11.	 Define	the	 	method.

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.1

	

Contributions	>	Datasets	>	Rendering	Data

Datasets
Rendering	Data

Contributions	>	Datasets	>	Rendering	Data	>	Rendering	Data	with	Python

Rendering	Data
Rendering	Data	with	Python

Introduction

This	page	explains	how	to	create	a	script	to	download	and	process	your	dataset	with	Python	for	QuantConnect

distribution.

Using	Processing	Framework

During	this	part	of	the	contribution	process,	you	need	to	edit	the	Lean.DataSource.<vendorNameDatasetName>	/

DataProcessing	/	process.sample.py	file	so	it	transforms	and	moves	your	raw	data	into	the	format	and	location	the

GetSource	methods	expect.	The	script	should	save	all	the	data	history	to	the	output	directory	in	your	machine's	root

directory	(for	example,	C:	/	output)	and	it	should	save	a	sample	of	the	data	history	to	the	Lean.DataSource.

<vendorNameDatasetName>	/	output	directory.

Follow	these	steps	to	set	up	the	downloading	and	processing	script	for	your	dataset:

1.	 Change	the	structure	of	the	Lean.DataSource.<vendorNameDatasetName>	/	output	directory	to	match	the	path

structure	you	defined	in	the	 	methods	(for	example,	output	/	alternative	/	xyzairline	/	ticketsales).

2.	 In	the	Lean.DataSource.<vendorNameDatasetName>	/	DataProcessing	/	process.sample.py	file,	add	some	code	to

time	how	long	it	takes	to	process	the	entire	dataset	and	how	long	it	takes	to	update	the	dataset	with	one	day's

worth	of	data.
You	need	this	information	for	when	you	provide	the	dataset	documentation	.	We	need	to	know	how	long	it	takes	to
process	your	dataset	so	we	can	schedule	its	processing	job.

3.	 In	the	processing	file,	load	the	raw	data	from	your	source.

You	can	fetch	data	from	any	of	the	following	sources:

Source Considerations

Local	Files It	can	help	to	first	copy	the	data	into	location.

Remote	API Stay	within	the	rate	limits.	You	can	use	the	rate	gate
class.

You	should	load	and	process	the	data	period	by	period.	Use	the	date	range	provided	to	the	script	to	process	the

specific	dates	provided.

4.	 If	your	dataset	is	for	universe	selection	data	and	it's	at	a	higher	frequency	than	hour	resolution,	resample	your

data	to	hourly	or	daily	resolution.	

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.5

5.	 If	any	of	the	following	statements	are	true,	skip	the	rest	of	the	steps	in	this	tutorial:

Your	dataset	is	not	linked	to	Equities.

Your	dataset	is	related	to	Equities	and	already	includes	the	point-in-time	tickers.

If	your	dataset	is	related	to	Equities	and	your	dataset	doesn't	account	for	ticker	changes,	the	rest	of	the	steps	help	you

to	adjust	the	tickers	over	the	historical	data	so	they	are	point-in-time.

If	you	don't	have	the	US	Equity	Security	Master	dataset	,	contact	us	.

In	a	terminal,	compile	the	data	processing	project.

This	step	generates	a	file	that	the	 	library	uses.

Create	and	initialize	a	map	file	provider.

Create	a	security	identifier.

After	you	finish	editing	the	process.sample.py	script,	run	it	to	populate	the	Lean.DataSource.

<vendorNameDatasetName>	/	output	directory	and	the	output	directory	in	your	machine's	root	directory.

Note:	The	pull	request	you	make	at	the	end	must	contain	sample	data	so	we	can	review	it	and	run	the	demonstration
algorithms.

Python	Processor	Examples

The	following	examples	are	rendering	datasets	with	Python	processing:

Lean.DataSource.BitcoinMetadata

Lean.DataSource.BrainSentiment

Lean.DataSource.CryptoSlamNFTSale

Lean.DataSource.QuiverQuantTwitterFollowers

Lean.DataSource.Regalytics

	

https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master/cli
https://www.quantconnect.com/contact
https://github.com/QuantConnect/Lean.DataSource.BitcoinMetadata/blob/master/process.py
https://github.com/QuantConnect/Lean.DataSource.BrainSentiment/blob/master/DataProcessing/process.py
https://github.com/QuantConnect/Lean.DataSource.CryptoSlamNFTSale/blob/master/process.py
https://github.com/QuantConnect/Lean.DataSource.QuiverQuantTwitterFollowers/blob/master/DataProcessing/process.py
https://github.com/QuantConnect/Lean.DataSource.Regalytics/blob/master/process.py

Contributions	>	Datasets	>	Rendering	Data	>	Rendering	Data	with	CSharp

Rendering	Data
Rendering	Data	with	CSharp

Introduction

This	page	explains	how	to	create	a	script	to	download	and	process	your	dataset	with	C#	for	QuantConnect	distribution.

Using	Processing	Framework

During	this	part	of	the	contribution	process,	you	need	to	edit	the	Lean.DataSource.<vendorNameDatasetName>	/

DataProcessing	/	Program.cs	file	so	it	transforms	and	moves	your	raw	data	into	the	format	and	location	the	GetSource

methods	expect.	The	program	should	save	all	the	data	history	to	the	output	directory	in	your	machine's	root	directory

(for	example,	C:	/	output)	and	it	should	save	a	sample	of	the	data	history	to	the	Lean.DataSource.

<vendorNameDatasetName>	/	output	directory.

Follow	these	steps	to	set	up	the	downloading	and	processing	script	for	your	dataset:

1.	 Change	the	structure	of	the	Lean.DataSource.<vendorNameDatasetName>	/	output	directory	to	match	the	path

structure	you	defined	in	the	 	methods	(for	example,	output	/	alternative	/	xyzairline	/	ticketsales).

2.	 In	the	Lean.DataSource.<vendorNameDatasetName>	/	DataProcessing	/	Program.cs	file,	add	some	code	to	time

how	long	it	takes	to	process	the	entire	dataset	and	how	long	it	takes	to	update	the	dataset	with	one	day's	worth	of

data.
You	need	this	information	for	when	you	provide	the	dataset	documentation	.	We	need	to	know	how	long	it	takes	to
process	your	dataset	so	we	can	schedule	its	processing	job.

3.	 In	the	processing	file,	load	the	raw	data	from	your	source.

You	can	fetch	data	from	any	of	the	following	sources:

Source Considerations

Local	Files It	can	help	to	first	copy	the	data	into	location.

Remote	API Stay	within	the	rate	limits.	You	can	use	the	rate	gate
class.

You	should	load	and	process	the	data	period	by	period.	Use	the	date	range	provided	to	the	script	to	process	the

specific	dates	provided.

4.	 If	your	dataset	is	for	universe	selection	data	and	it's	at	a	higher	frequency	than	hour	resolution,	resample	your

data	to	hourly	or	daily	resolution.	

5.	 If	any	of	the	following	statements	are	true,	skip	the	rest	of	the	steps	in	this	tutorial:

Your	dataset	is	not	related	to	Equities.

Your	dataset	is	related	to	Equities	and	already	includes	the	point-in-time	tickers.

If	your	dataset	is	related	to	Equities	and	your	dataset	doesn't	account	for	ticker	changes,	the	rest	of	the	steps	help	you

to	adjust	the	tickers	over	the	historical	data	so	they	are	point-in-time.

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.5

If	you	don't	have	the	US	Equity	Security	Master	dataset	,	contact	us	.

In	the	Lean.DataSource.<vendorNameDatasetName>	/	DataProcessing	/	Program.cs	file,	create	and	initialize	a	map

file	provider.

Create	a	security	identifier.

In	a	terminal,	compile	the	data	processing	project	to	generate	the	process.exe	executable	file.

After	you	finish	compiling	the	Program.cs	file,	run	the	process.exe	file	to	populate	the	Lean.DataSource.

<vendorNameDatasetName>	/	output	directory	and	the	output	directory	in	your	machine's	root	directory.

Note:	The	pull	request	you	make	at	the	end	must	contain	sample	data	so	we	can	review	it	and	run	the	demonstration
algorithms.

CSharp	Processor	Examples

The	following	examples	are	rendering	datasets	with	C#	processing:

Lean.DataSource.BinanceFundingRate

Lean.DataSource.CoinGecko

Lean.DataSource.CryptoCoarseFundamentalUniverse

Lean.DataSource.QuiverInsiderTrading

Lean.DataSource.VIXCentral

	

https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master/cli
https://www.quantconnect.com/contact
https://github.com/QuantConnect/Lean.DataSource.BinanceFundingRate/blob/master/DataProcessing/BinanceFundingRateDownloader.cs
https://github.com/QuantConnect/Lean.DataSource.CoinGecko/blob/master/DataProcessing/CoinGeckoDataDownloader.cs
https://github.com/QuantConnect/Lean.DataSource.CryptoCoarseFundamentalUniverse/blob/master/DataProcessing/CryptoCoarseFundamentalUniverseDataDownloader.cs
https://github.com/QuantConnect/Lean.DataSource.QuiverInsiderTrading/blob/master/DataProcessing/QuiverInsiderTradingDataDownloader.cs
https://github.com/QuantConnect/Lean.DataSource.VIXCentral/blob/master/DataProcessing/VIXContangoProcessor.cs

Contributions	>	Datasets	>	Rendering	Data	>	Rendering	Data	with	Notebooks

Rendering	Data
Rendering	Data	with	Notebooks

Introduction

This	page	explains	how	to	create	a	script	to	download	and	process	your	dataset	with	Jupyter	Notebooks	for

QuantConnect	distribution.

Using	Processing	Framework

During	this	part	of	the	contribution	process,	you	need	to	edit	the	Lean.DataSource.<vendorNameDatasetName>	/

DataProcessing	/	process.sample.ipynb	file	so	it	transforms	and	moves	your	raw	data	into	the	format	and	location	the

GetSource	methods	expect.	The	notebook	should	save	all	the	data	history	to	the	output	directory	in	your	machine's	root

directory	(for	example,	C:	/	output)	and	it	should	save	a	sample	of	the	data	history	to	the	Lean.DataSource.

<vendorNameDatasetName>	/	output	directory.

Follow	these	steps	to	set	up	the	downloading	and	processing	script	for	your	dataset:

1.	 Change	the	structure	of	the	Lean.DataSource.<vendorNameDatasetName>	/	output	directory	to	match	the	path

structure	you	defined	in	the	 	methods	(for	example,	output	/	alternative	/	xyzairline	/	ticketsales).

2.	 In	the	Lean.DataSource.<vendorNameDatasetName>	/	DataProcessing	/	process.sample.ipynb	file,	add	some	code

to	time	how	long	it	takes	to	process	the	entire	dataset	and	how	long	it	takes	to	update	the	dataset	with	one	day's

worth	of	data.
You	need	this	information	for	when	you	provide	the	dataset	documentation	.	We	need	to	know	how	long	it	takes	to
process	your	dataset	so	we	can	schedule	its	processing	job.

3.	 In	the	processing	file,	load	the	raw	data	from	your	source.

You	can	fetch	data	from	any	of	the	following	sources:

Source Considerations

Local	Files It	can	help	to	first	copy	the	data	into	location.

Remote	API Stay	within	the	rate	limits.	You	can	use	the	rate	gate
class.

You	should	load	and	process	the	data	period	by	period.	Use	the	date	range	provided	to	the	script	to	process	the

specific	dates	provided.

4.	 If	your	dataset	is	for	universe	selection	data	and	it's	at	a	higher	frequency	than	hour	resolution,	resample	your

data	to	hourly	or	daily	resolution.	

5.	 If	any	of	the	following	statements	are	true,	skip	the	rest	of	the	steps	in	this	tutorial:

Your	dataset	is	not	related	to	Equities.

Your	dataset	is	related	to	Equities	and	already	includes	the	point-in-time	tickers.

If	your	dataset	is	related	to	Equities	and	your	dataset	doesn't	account	for	ticker	changes,	the	rest	of	the	steps	help	you

to	adjust	the	tickers	over	the	historical	data	so	they	are	point-in-time.

file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.2
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.5

If	you	don't	have	the	US	Equity	Security	Master	dataset	,	contact	us	.

In	a	terminal,	compile	the	data	processing	project.

This	step	generates	a	file	that	the	 	library	uses.

Create	and	initialize	a	map	file	provider.

Create	a	security	identifier.

After	you	finish	editing	the	process.sample.ipynb	script,	run	its	cells	to	populate	the	Lean.DataSource.

<vendorNameDatasetName>	/	output	directory	and	the	output	directory	in	your	machine's	root	directory.

Note:	The	pull	request	you	make	at	the	end	must	contain	sample	data	so	we	can	review	it	and	run	the	demonstration
algorithms.

Notebook	Processor	Examples

The	following	examples	are	rendering	datasets	with	Jupyter	Notebook	processing:

Lean.DataSource.KavoutCompositeFactorBundle

Lean.DataSource.USEnergy

Lean.DataSource.FRED

	

https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master/cli
https://www.quantconnect.com/contact
https://github.com/QuantConnect/Lean.DataSource.KavoutCompositeFactorBundle/blob/master/process.ipynb
https://github.com/QuantConnect/Lean.DataSource.USEnergy/blob/master/process.ipynb
https://github.com/QuantConnect/Lean.DataSource.FRED/blob/master/process.ipynb

Contributions	>	Datasets	>	Testing	Data	Models

Datasets
Testing	Data	Models

Introduction

The	implementation	of	your	Data	Source	must	be	thoroughly	tested	to	be	listed	on	the	Dataset	Market	.

Run	Demonstration	Algorithms

Follow	these	steps	to	test	if	your	demonstration	algorithm	will	run	in	production	with	the	processed	data:

1.	 Open	the	Lean.DataSource.<vendorNameDatasetName>	/	QuantConnect.DataSource.csproj	file	in	Visual	Studio.

2.	 In	the	top	menu	bar	of	Visual	Studio,	click	Build	>	Build	Solution	.

The	Output	panel	displays	the	build	status	of	the	project.

3.	 Close	Visual	Studio.

4.	 If	you	have	a	local	copy	of	LEAN,	pull	the	latest	changes.

5.	 If	you	don't	have	a	local	copy	of	LEAN,	fork	the	LEAN	repository	and	then	clone	it	.

6.	 Copy	the	contents	of	the	Lean.DataSource.<vendorNameDatasetName>	/	output	directory	and	paste	them	into	the

Lean	/	Data	directory.

7.	 Open	the	Lean	/	QuantConnect.Lean.sln	file	in	Visual	Studio.

8.	 In	the	Solution	Explorer	panel	of	Visual	Studio,	right-click	QuantConnect.Algorithm.CSharp	and	then	click	Add	>

Existing	Item…	.

9.	 In	the	Add	Existing	Item	window,	click	the	Lean.DataSource.<vendorNameDatasetName>	/

<vendorNameDatasetName>Algorithm.cs	file	and	then	click	Add	.

10.	 In	the	Solution	Explorer	panel,	right-click	QuantConnect.Algorithm.CSharp	and	then	click	Add	>	Project

Reference...	.

11.	 In	the	Reference	Manager	window,	click	Browse…	.

12.	 In	the	Select	the	files	to	reference…	window,	click	the	Lean.DataSource.<vendorNameDatasetName>	/	bin	/

Debug	/	net6.0	/	QuantConnect.DataSource.<vendorNameDatasetName>.dll	file	and	then	click	Add	.

The	Reference	Manager	window	displays	the	QuantConnect.DataSource.<vendorNameDatasetName>.dll	file	with

the	check	box	beside	it	enabled.

13.	 Click	OK	.

The	Solution	Explorer	panel	adds	the	QuantConnect.DataSource.<vendorNameDatasetName>.dll	file	under

https://www.quantconnect.com/datasets
https://github.com/QuantConnect/Lean/fork
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository

QuantConnect.Algorithm.CSharp	>	Dependencies	>	Assemblies	.

14.	 In	the	Lean	/	Algorithm.CSharp	/	<vendorNameDatasetName>Algorithm.cs	file,	write	an	algorithm	that	uses	your

new	dataset.

15.	 In	the	Solution	Explorer	panel,	click	QuantConnect.Lean.Launcher	>	config.json	.

16.	 In	the	config.json	file,	set	the	following	keys:

17.	 Press	Ctrl+F5	to	backtest	your	demonstration	algorithm.

18.	 Copy	the	Lean.DataSource.<vendorNameDatasetName>	/	<vendorNameDatasetName>Algorithm.py	file	and

paste	it	in	Lean	/	Algorithm.Python	directory.

19.	 In	the	Lean	/	Algorithm.Python	/	<vendorNameDatasetName>Algorithm.py	file,	write	an	algorithm	that	uses	your

new	dataset.

20.	 In	the	Solution	Explorer	panel,	click	QuantConnect.Lean.Launcher	>	config.json	.

21.	 In	the	config.json	file,	set	the	following	keys:

22.	 Press	Ctrl+F5	to	backtest	your	demonstration	algorithm.

Important:	Your	backtests	must	run	without	error.	If	your	backtests	produce	errors,	correct	them	and	then	run	the

backtest	again.

23.	 Copy	the	Lean	/	Algorithm.CSharp	/	<vendorNameDatasetName>Algorithm.cs	file	to	Lean.DataSource.

<vendorNameDatasetName>	/	<vendorNameDatasetName>Algorithm.cs	.

24.	 Copy	the	Lean	/	Algorithm.Python	/	<vendorNameDatasetName>Algorithm.py	file	to	Lean.DataSource.

<vendorNameDatasetName>	/	<vendorNameDatasetName>Algorithm.py	.

Run	Unit	Tests

You	must	run	your	demonstration	algorithms	without	error	before	you	set	up	unit	tests.

In	the	Lean.DataSource.<vendorNameDatasetName>	/	<vendorNameDatasetName>Tests.cs	file,	define	the

	method	to	return	an	instance	of	your	 	class	and	then	execute	the	following	commands	to

run	the	unit	tests:

	

https://www.quantconnect.com/docs/v2/writing-algorithms
https://www.quantconnect.com/docs/v2/writing-algorithms
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.1.4

Contributions	>	Datasets	>	Data	Documentation

Datasets
Data	Documentation

Introduction

This	page	explains	how	to	provide	documentation	for	your	dataset	so	QuantConnect	members	can	use	it	in	their	trading

algorithms.

Required	Key	Properties

You	need	to	process	the	entire	dataset	to	collect	the	following	information:

Property Description

Start	Date Date	and	time	of	the	first	data	point

Asset	Coverage Number	of	assets	covered	by	the	dataset

Data	density Dense	for	tick	data.	Regular	or	Sparse	according	to	the
frequency.

Resolution Options:	Tick,	Second,	Minute,	Hourly,	&	Daily.

Timezone Data	timezone.	This	is	a	property	of	the	data	source.

Data	process	time Time	and	days	of	the	week	to	process	the	data.

Data	process	duration Time	to	process	the	entire	the	dataset.

Update	process	duration Time	to	update	the	dataset.

Provide	Documentation

To	provide	documentation	for	your	dataset,	in	the	Lean.DataSource.<vendorNameDatasetName>	/	listing-about.md	and

Lean.DataSource.<vendorNameDatasetName>	/	listing-documentation.md	files,	fill	in	the	missing	content.

Next	Steps

After	we	review	and	accept	your	dataset	contribution,	we	will	create	a	page	in	our	Dataset	Market	.	At	that	point,	you

will	be	able	to	write	algorithms	in	QuantConnect	Cloud	using	your	dataset	and	you	can	contribute	an	example	algorithm

for	the	dataset	listing.	After	your	dataset	listing	is	complete,	we'll	include	your	new	dataset	in	our	downloading	data

tutorial	.

	

https://www.quantconnect.com/datasets
https://www.quantconnect.com/docs/v2//lean-cli/datasets/quantconnect/download-by-ticker/key-concepts#02-Using-the-CLI

Contributions	>	Brokerages

Contributions
Brokerages

Creating	a	fully	supported	brokerage	is	a	challenging	endeavor.	LEAN	requires	a	number	of	individual	pieces	which

work	together	to	form	a	complete	brokerage	implementation.	This	guide	aims	to	describe	in	as	much	detail	as	possible

what	you	need	to	do	for	each	module.

The	end	goal	is	to	submit	a	pull	request	that	passes	all	tests.	Partially-completed	brokerage	implementations	are

acceptable	if	they	are	merged	to	a	branch.	It's	easy	to	fall	behind	master,	so	be	sure	to	keep	your	branch	updated	with

the	master	branch.	Before	you	start,	read	LEAN's	coding	style	guidelines	to	comply	with	the	code	commenting	and

design	standards.

The	root	of	the	brokerage	system	is	the	algorithm	job	packets,	which	hold	configuration	information	about	how	to	run

LEAN.	The	program	logic	is	a	little	convoluted.	It	moves	from	config.json	>	create	job	packet	>	create	brokerage

factory	matching	name	>	set	job	packet	brokerage	data	>	factory	creates	brokerage	instance	.	As	a	result,	we'll	start

creating	a	brokerage	at	the	root,	the	configuration	and	brokerage	factory.

Setting	Up	Your	Environment

Set	up	your	local	brokerage	repository.

Laying	the	Foundation

()	Stub	out	the	implementation	and	initialize	a	brokerage	instance.

Creating	the	Brokerage

()	Instal	key	brokerage	application	logic,	where	possible	using	a	brokerage	SDK.

Translating	Symbol	Conventions

()	Translate	brokerage	specific	tickers	to	LEAN	format	for	a	uniform	algorithm	design	experience.

Describing	Brokerage	Limitations

()	Describe	brokerage	support	of	orders	and	set	transaction	models.

Enabling	Live	Data	Streaming

()	Set	up	a	live	streaming	data	service	from	a	brokerage-supplied	source.

Enabling	Historical	Data

()	Tap	into	the	brokerage	historical	data	API	to	serve	history	for	live	algorithms.

Downloading	Data

()	Save	data	from	the	brokerage	to	disk	in	LEAN	format.

Modeling	Fee	Structures

()	Enable	accurate	backtesting	with	specific	fee	structures	of	the	brokerage.

Updating	the	Algorithm	API

()	Combine	the	various	models	together	to	form	a	brokerage	set.

https://github.com/QuantConnect/Lean/blob/master/CONTRIBUTING.md#code-style-and-testing

See	Also

Dataset	Market	
Purchasing	Datasets	

	

https://www.quantconnect.com/datasets
https://www.quantconnect.com/docs/v2/cloud-platform/datasets/licensing

Contributions	>	Brokerages	>	Setting	Up	Your	Environment

Brokerages
Setting	Up	Your	Environment

Introduction

This	page	explains	how	to	set	up	your	coding	environment	to	create,	develop,	and	test	your	brokerage	before	you

contribute	it	to	LEAN.

Prerequisites

Working	knowledge	of	C#.	You	also	need	to	install	.NET	6.0	.

Set	Up	Environment

Follow	these	steps	to	set	up	your	environment:

1.	 Fork	Lean	and	then	clone	your	forked	repository	to	your	local	machine.

2.	 Open	the	Lean.Brokerages.Template	repository	and	click	Use	this	template	.

3.	 On	the	Create	a	new	repository	from	Lean.Brokerages.Template	page,	set	the	repository	name	to	Lean.Brokerages.

<brokerageName>	(for	example,	Lean.Brokerages.XYZ).

4.	 Click	Create	repository	from	template	.

5.	 Clone	the	Lean.Brokerages.<brokerageName>	repository.

6.	 If	you're	on	a	Linux	terminal,	in	your	Lean.Brokerages.<brokerageName>	directory,	change	the	access

permissions	of	the	bash	script.

7.	 In	your	Lean.Brokerages.<brokerageName>	directory,	run	the	renameBrokerage.sh	bash	script.	

The	bash	script	replaces	some	placeholder	text	in	the	Lean.Brokerages.<brokerageName>	directory	and	renames

some	files	according	to	your	brokerage	name.

	

https://dotnet.microsoft.com/download/dotnet/6.0
https://github.com/QuantConnect/Lean/
https://github.com/QuantConnect/Lean.Brokerages.Template

Contributions	>	Brokerages	>	Laying	the	Foundation

Brokerages
Laying	the	Foundation

IBrokerageFactory

Primary	Role Create	and	initialize	a	brokerage	instance.

Interface IBrokerageFactory.cs

Example BitfinexBrokerageFactory.cs

Target	Location Lean.Brokerages.<brokerageName>	/	QuantConnect.
<brokerageName>Brokerage	/

Introduction

The	IBrokerageFactory	creates	brokerage	instances	and	configures	LEAN	with	a	Job	Packet	.	To	create	the	right

	type,	LEAN	uses	the	brokerage	name	in	the	job	packet.	To	set	the	brokerage	name,	LEAN	uses	the

	value	in	the	configuration	file	.

Prerequisites

You	need	to	set	up	your	environment	before	you	can	lay	the	foundation	for	a	new	brokerage.

Lay	the	Foundation

Follow	these	steps	to	stub	out	the	implementation	and	initialize	a	brokerage	instance:

1.	 In	the	Lean	/	Launcher	/	config.json	file,	add	a	few	key-value	pairs	with	your	brokerage	configuration	information.

For	example,	 	and	 	keys.	These	key-value	pairs	will	be	used	for	most	local

debugging	and	testing	as	the	default.	LEAN	automatically	copies	these	pairs	to	the	BrokerageData	member	of	the

job	packet	as	a	dictionary	of	 	pairs.

2.	 In	the	Lean.Brokerages.<brokerageName>	/	QuantConnect.<brokerageName>Brokerage	/

<brokerageName>Factory.cs	file,	update	the	 	member	so	it	uses	the	 	class	to	load	all	the

required	configuration	settings	from	the	Lean	/	Launcher	/	config.json	file.

For	instance,	 	returns	the	 	value	from	the	configuration

file.	For	a	full	example,	see	the	BrokerageData	member	in	the	 	.

In	the	 	examples,	you'll	see	code	like

	,	which	adds	parts	to	the	Composer	.	The

Composer	is	a	system	in	LEAN	for	dynamically	loading	types.	In	this	case,	it's	adding	an	instance	of	the

	for	the	brokerage	to	the	composer.	You	can	think	of	the	Composer	as	a	library	and	adding	parts

is	like	adding	books	to	its	collection.

3.	 In	the	Lean	/	Common	/	Brokerages	folder,	create	a	<brokerageName>BrokerageModel.cs	file	with	a	stub

implementation	that	inherits	from	the	DefaultBrokerageModel	.

https://github.com/QuantConnect/Lean/blob/master/Common/Interfaces/IBrokerageFactory.cs
https://github.com/QuantConnect/Lean.Brokerages.Bitfinex/blob/master/QuantConnect.BitfinexBrokerage/BitfinexBrokerageFactory.cs
https://github.com/QuantConnect/Lean/blob/master/Common/Interfaces/IBrokerageFactory.cs
https://github.com/QuantConnect/Lean/blob/master/Common/Packets/LiveNodePacket.cs#L37
https://github.com/QuantConnect/Lean/blob/master/Launcher/config.json
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.1
https://github.com/QuantConnect/Lean/blob/master/Common/Packets/LiveNodePacket.cs#L43
https://github.com/QuantConnect/Lean.Brokerages.Bitfinex/blob/master/QuantConnect.BitfinexBrokerage/BitfinexBrokerageFactory.cs#L49
https://www.quantconnect.com/docs/v2/writing-algorithms/reality-modeling/brokerages/supported-models/quantconnect-paper-trading

Brokerage	models	tell	LEAN	what	order	types	a	brokerage	supports,	whether	we're	allowed	to	update	an	order,

and	what	reality	models	to	use.	Use	the	following	stub	implementation	for	now:

where	 	is	the	name	of	your	brokerage.	For	example,	if	the	brokerage	name	is	XYZ,	then

	should	be	 	.	You'll	extend	this	implementation	later.

4.	 In	the	Lean.Brokerages.<BrokerageName>	/	QuantConnect.<brokerageName>Brokerage	/

<brokerageName>BrokerageFactory.cs	file,	define	 	to	return	an	instance	of	your	new

brokerage	model.

5.	 If	your	brokerage	uses	websockets	to	send	data,	in	the	Lean.Brokerages.<brokerageName>	/	QuantConnect.

<brokerageName>	/	<brokerageName>Brokerage.cs	file,	replace	the	 	base	class	for

	.

6.	 In	the	Lean.Brokerages.<brokerageName>	/	QuantConnect.<brokerageName>Brokerage	/

<brokerageName>Brokerage.cs	file,	update	the	constructor	to	save	required	authentication	data	to	private

variables.

7.	 In	the	Lean.Brokerages.<brokerageName>	/	QuantConnect.<brokerageName>Brokerage	/

<brokerageName>BrokerageFactory.cs	file,	define	the	 	method	to	create	and	return	an	instance

of	your	new	brokerage	model	without	connecting	to	the	brokerage.

The	Brokerage	Factory	uses	a	job	packet	to	create	an	initialized	brokerage	instance	in	the	

method.	Assume	the	 	argument	has	the	best	source	of	data,	not	the	 	property.	The	

property	in	the	factory	are	the	starting	default	values	from	the	configuration	file,	which	can	be	overridden	by	a

runtime	job.

8.	 In	the	Lean	/	Launcher	/	config.json	file,	add	a	 	key.

These	 	keys	group	configuration	flags	together	and	override	the	root	configuration	values.

Use	the	following	key-value	pair	as	a	starting	point:

https://www.quantconnect.com/docs/v2/writing-algorithms/reality-modeling/key-concepts

where	 	and	 	are	placeholders	for	your	brokerage	name.

9.	 In	the	Lean	/	Launcher	/	config.json	file,	set	the	 	value	to	the	your	new	brokerage	environment.

For	example,	 	.

10.	 Build	the	solution.

Running	the	solution	won't	work,	but	the	stub	implementation	should	still	build.

	

Contributions	>	Brokerages	>	Creating	the	Brokerage

Brokerages
Creating	the	Brokerage

IBrokerage

Primary	Role Brokerage	connection,	orders,	and	fill	events.

Interface IBrokerage.cs

Example BitfinexBrokerage.cs

Target	Location Lean.Brokerages.<brokerageName>	/	QuantConnect.
<brokerageName>Brokerage	/

Introduction

The	IBrokerage	holds	the	bulk	of	the	core	logic	responsible	for	running	the	brokerage	implementation.	Many	smaller

models	described	later	internally	use	the	brokerage	implementation,	so	its	best	to	now	start	implementating	the

	.	Brokerage	classes	can	get	quite	large,	so	use	a	 	class	modifier	to	break	up	the	files	in	appropriate

categories.

Prerequisites

You	need	to	lay	the	foundation	before	you	can	create	a	new	brokerage.

Brokerage	Roles

The	brokerage	has	many	the	following	important	roles	vital	for	the	stability	of	a	running	algorithm:

1.	 Maintain	Connection	-	Connect	and	maintain	connection	while	algorithm	running.

2.	 Setup	State	-	Initialize	the	algorithm	portfolio,	open	orders	and	cashbook.

3.	 Order	Operations	-	Create,	update	and	cancel	orders.

4.	 Order	Events	-	Receive	order	fills	and	apply	them	to	portfolio.

5.	 Account	Events	-	Track	non-order	events	(cash	deposits/removals).

6.	 Brokerage	Events	-	Interpret	brokerage	messages	and	act	when	required.

7.	 Serve	History	Requests	-	Provide	historical	data	on	request.

Brokerages	often	have	their	own	ticker	styles,	order	class	names,	and	event	names.	Many	of	the	methods	in	the

brokerage	implementation	may	simply	be	converting	from	the	brokerage	object	format	into	LEAN	format.	You	should

plan	accordingly	to	write	neat	code.

The	brokerage	must	implement	the	following	interfaces:

Implementation	Style

https://github.com/QuantConnect/Lean/blob/master/Common/Interfaces/IBrokerage.cs
https://github.com/QuantConnect/Lean.Brokerages.Bitfinex/blob/master/QuantConnect.BitfinexBrokerage/BitfinexBrokerage.cs
https://github.com/QuantConnect/Lean/blob/master/Common/Interfaces/IBrokerage.cs
file:///tmp/wktemp-595013f9-0d83-4462-add5-79c89466eba0.html#2.2.2

This	guide	focuses	on	implementing	the	brokerage	step-by-step	in	LEAN	because	it's	a	more	natural	workflow	for	most

people.	You	can	also	follow	a	more	test-driven	development	process	by	following	the	test	harness.	To	do	this,	create	a

new	test	class	that	extends	from	the	base	class	in	Lean	/	Tests	/	Brokerages	/	BrokerageTests.cs	.	This	test-framework

tests	all	the	methods	for	an	 	implementation.

Connection	Requirements

LEAN	is	best	used	with	streaming	or	socket-based	brokerage	connections.	Streaming	brokerage	implementations	allow

for	the	easiest	translation	of	broker	events	into	LEAN	events.	Without	streaming	order	events,	you	will	need	to	poll	for

to	check	for	fills.	In	our	experience,	this	is	fraught	with	additional	risks	and	challenges.

SDK	Libraries

Most	brokerages	provide	a	wrapper	for	their	API.	If	it	has	a	permissive	license	and	it's	compatible	with	.NET	6,	you

should	utilize	it.	Although	it	is	technically	possible	to	embed	an	external	github	repository,	we've	elected	to	not	do	this

to	make	LEAN	easier	to	install	(submodules	can	be	tricky	for	beginners).	Instead,	copy	the	library	into	its	own	subfolder

of	the	brokerage	implementation.	For	example,	Lean.Brokerages.<brokerageName>	/	QuantConnect.

<brokerageName>Brokerage	/	BrokerLib	/	*	.	After	you	add	a	library,	build	the	project	again	to	make	sure	the	library

successfully	compiles.

LEAN	Open-Source.	If	you	copy	and	paste	code	from	an	external	source,	leave	the	comments	and	headers	intact.	If	they

don't	have	a	comment	header,	add	one	to	each	file,	referencing	the	source.	Let's	keep	the	attributions	in	place.

Define	the	Brokerage	Class

The	following	sections	describe	components	of	the	brokerage	implementation	in	the	Lean.Brokerages.

<brokerageName>	/	QuantConnect.<brokerageName>Brokerage	/	<brokerageName>Brokerage.cs	file.

Base	Class

Using	a	base	class	is	optional	but	allows	you	to	reuse	event	methods	we	have	provided.	The	 	object

implements	these	event	handlers	and	marks	the	remaining	items	as	 	.

LEAN	provides	an	optional	base	class	 	which	seeks	to	connect	and	maintain	a	socket

connection	and	pass	messages	to	an	event	handler.	As	each	socket	connection	is	different,	carefully	consider	before

using	this	class.	It	might	be	easier	and	more	maintainable	to	simply	maintain	your	own	socket	connection.

Brush	up	on	the	 	class	keyword.	It	will	help	you	break-up	your	class	later.

Class	Constructor

Once	the	scaffolding	brokerage	methods	are	in	place	(overrides	of	the	abstract	base	classes),	you	can	focus	on	the	class

constructor.	If	you	are	using	a	brokerage	SDK,	create	a	new	instance	of	their	library	and	store	it	to	a	class	variable	for

later	use.	You	should	define	the	constructor	so	that	it	accepts	all	the	arguments	you	pass	it	during	the	

method	you	implemented	in	the	Lean.Brokerages.<brokerageName>	/	QuantConnect.<brokerageName>Brokerage	/

<brokerageName>BrokerageFactory.cs	file.

The	following	table	provides	some	example	implementations	of	the	brokerage	class	constructor:

Brokerage Description

Interactive	Brokers Launches	an	external	process	to	create	the	brokerage.

OANDA Creates	an	SDK	instance	and	assigns	internal	event
handlers.

Coinbase Offloads	constructor	work	to	 	and
uses	the	 	base	class.

The	 	property	is	a	human-readable	brokerage	name	for	debugging	and	logging.	For	US	Equity-regulated

brokerages,	convention	states	this	name	generally	ends	in	the	word	"Brokerage".

The	 	method	triggers	logic	for	establishing	a	link	to	your	brokerage.	Normally,	we	don't	do	this	in	the

constructor	because	it	makes	algorithms	and	brokerages	die	in	the	 	process.	For	most	brokerages,	to

establish	a	connection	with	the	brokerage,	call	the	connect	method	on	your	SDK	library.

The	following	table	provides	some	example	implementations	of	the	 	method:

Brokerage Description

Interactive	Brokers Connects	to	an	external	process	with	the	brokerage
SDK.

OANDA Simple	example	that	calls	the	brokerage	SDK.

Coinbase Establishes	the	WebSocket	connection	and	monitoring
in	a	thread.

If	a	soft	failure	occurs	like	a	lost	internet	connection	or	a	server	502	error,	create	a	new	 	so	you

allow	the	algorithm	to	handle	the	brokerage	messages	.	For	example,	Interactive	Brokers	resets	socket	connections	at

different	times	globally,	so	users	in	other	parts	of	the	world	can	get	disconnected	at	strange	times	of	the	day.	Knowing

this,	they	may	elect	to	have	their	algorithm	ignore	specific	disconnection	attempts.

If	a	hard	failure	occurs	like	an	incorrect	password	or	an	unsupported	API	method,	throw	a	real	exception	with	details	of

the	error.

The	 	method	is	called	at	the	end	of	the	algorithm	before	LEAN	shuts	down.

The	 	property	is	a	boolean	that	indicates	the	state	of	the	brokerage	connection.	Depending	on	your

connection	style,	this	may	be	automatically	handled	for	you	and	simply	require	passing	back	the	value	from	your	SDK.

Alternatively,	you	may	need	to	maintain	your	own	connection	state	flag	in	your	brokerage	class.

The	 	method	should	send	a	new	LEAN	order	to	the	brokerage	and	report	back	the	success	or	failure.	The

https://github.com/QuantConnect/Lean.Brokerages.InteractiveBrokers/blob/master/QuantConnect.InteractiveBrokersBrokerage/InteractiveBrokersBrokerage.cs#L282
https://github.com/QuantConnect/Lean.Brokerages.OANDA/blob/master/QuantConnect.OandaBrokerage/OandaBrokerage.cs#L76
https://github.com/QuantConnect/Lean.Brokerages.Coinbase/blob/master/QuantConnect.CoinbaseBrokerage/CoinbaseBrokerage.cs#L47
https://github.com/QuantConnect/Lean.Brokerages.InteractiveBrokers/blob/master/QuantConnect.InteractiveBrokersBrokerage/InteractiveBrokersBrokerage.cs#L704
https://github.com/QuantConnect/Lean.Brokerages.OANDA/blob/master/QuantConnect.OandaBrokerage/OandaBrokerage.cs#L100
https://github.com/QuantConnect/Lean.Brokerages.Coinbase/blob/master/QuantConnect.CoinbaseBrokerage/CoinbaseBrokerage.cs#L47
https://www.quantconnect.com/docs/v2/writing-algorithms/live-trading/brokerages#05-Monitor-Brokerage-Messages

	method	accepts	a	generic	 	object,	which	is	the	base	class	for	all	order	types.	The	first	step	of	placing

an	order	is	often	to	convert	it	from	LEAN	format	into	the	format	that	the	brokerage	SDK	requires.	Your	brokerage

implementation	should	aim	to	support	as	many	LEAN	order	types	as	possible.	There	may	be	other	order	types	in	the

brokerage,	but	implementing	them	is	considered	out	of	scope	of	a	rev-0	brokerage	implementation.

Converting	order	types	is	an	error-prone	process	and	you	should	carefully	review	each	order	after	you've	ported	it.

Some	brokerages	have	many	properties	on	their	orders,	so	check	each	required	property	for	each	order.	To	simplify	the

process,	define	an	internal	 	method	to	convert	orders	between	LEAN	format

and	your	brokerage	format.	Part	of	the	order	conversion	might	be	converting	the	brokerage	ticker	(for	example,	LEAN

name	"EURUSD"	vs	OANDA	name	"EUR/USD").	This	is	done	with	a	 	class.	You	can	add	this

functionality	later.	For	now,	pass	a	request	for	the	brokerage	ticker	to	the	stub	implementation.

Once	the	order	type	is	converted,	use	the	 	property	to	check	if	you're	connected	before	placing	the	order.	If

you're	not	connected,	throw	an	exception	to	halt	the	algorithm.	Otherwise,	send	the	order	to	your	brokerage	submit

API.	Oftentimes,	you	receive	an	immediate	reply	indicating	the	order	was	successfully	placed.	The	 	method

should	return	true	when	the	order	is	accepted	by	the	brokerage.	If	the	order	is	invalid,	immediately	rejected,	or	there	is

an	internet	outage,	the	method	should	return	false.

The	 	method	transmits	an	update	request	to	the	API	and	returns	true	if	it	was	successfully	processed.

Updating	an	order	is	one	of	the	most	tricky	parts	of	brokerage	implementations.	You	can	easily	run	into	synchronization

issues.

The	following	table	provides	some	example	implementations	of	the	 	method:

Brokerage Description

Interactive	Brokers Updates	multiple	asset	classes	with	an	external
application.

OANDA Simple	example	that	calls	the	brokerage	SDK.

Coinbase Throws	an	exception	because	order	updates	are	not
supported.

	

https://www.quantconnect.com/docs/v2/writing-algorithms/trading-and-orders/order-types
https://github.com/QuantConnect/Lean.Brokerages.InteractiveBrokers/blob/master/QuantConnect.InteractiveBrokersBrokerage/InteractiveBrokersBrokerage.cs#L391
https://github.com/QuantConnect/Lean.Brokerages.OANDA/blob/master/QuantConnect.OandaBrokerage/OandaBrokerage.cs#L201
https://github.com/QuantConnect/Lean.Brokerages.Coinbase/blob/master/QuantConnect.CoinbaseBrokerage/CoinbaseBrokerage.cs#L209

Contributions	>	Brokerages	>	Translating	Symbol	Conventions

Brokerages
Translating	Symbol	Conventions

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Contributions	>	Brokerages	>	Describing	Brokerage	Limitations

Brokerages
Describing	Brokerage	Limitations

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Contributions	>	Brokerages	>	Enabling	Live	Data	Streaming

Brokerages
Enabling	Live	Data	Streaming

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Contributions	>	Brokerages	>	Enabling	Historical	Data

Brokerages
Enabling	Historical	Data

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Contributions	>	Brokerages	>	Downloading	Data

Brokerages
Downloading	Data

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Contributions	>	Brokerages	>	Modeling	Fee	Structures

Brokerages
Modeling	Fee	Structures

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Contributions	>	Brokerages	>	Updating	the	Algorithm	API

Brokerages
Updating	the	Algorithm	API

Introduction

This	brokerage	development	guide	is	still	under	construction.

	

Statistics

Statistics

Statistics	>	Capacity

Statistics
Capacity

Introduction

Capacity	is	a	measure	of	how	much	capital	a	strategy	can	trade	before	the	performance	of	the	strategy	degrades	from

market	impact.	The	capacity	calculation	is	done	on	a	rolling	basis	with	one	snapshot	taken	at	the	end	of	each	week.	This

page	outlines	how	LEAN	performs	the	entire	calculation.

Security	Capacity

The	first	step	to	determine	the	capacity	of	the	strategy	is	to	compute	the	capacity	of	each	security	the	strategy	trades.

Market	Capacity	Dollar	Volume

Following	each	order	fill,	LEAN	monitors	and	records	the	dollar-volume	for	a	series	of	bars.	To	get	an	estimate	of	the

available	capacity,	we	combine	many	second	and	minute	trade	bars	together.	For	hourly	or	daily	data	resolutions,	we

only	use	one	bar.

Crypto	Volume

Crypto	trade	volume	is	light,	but	there	is	significant	capacity	even	at	the	very	top	of	the	order	book.	The	estimated

volume	of	Crypto	is	based	on	the	average	size	on	the	bid	and	ask.

Forex	and	CFD	Volume

Forex	and	CFD	assets	do	not	have	a	trade	volume	or	quote	size	information	so	they	were	approximated	as	deeply	liquid

assets	with	approximately	$25,000,000	depth	per	minute.

Volume	Accumulation	Period

The	number	of	bars	we	use	to	calculate	the	market	volume	estimate	depends	on	the	asset	liquidity.	The	following	table

shows	the	formulas	LEAN	uses	to	determine	how	long	of	a	period	the	market	capacity	dollar	volume	is	accumulated	for

after	each	order	fill,	as	a	function	of	the	security	resolution.	The	AvgDollarVolume	in	the	table	represents	the	average

dollar	volume	per	minute	for	the	security	you're	trading.	Notice	that	for	the	edge	case	where	the	average	dollar	volume

is	zero,	the	calculations	use	10	minutes	of	data.

Resolution Timeout	Period

Second k =
100 ,000

AvgDollarVolume , if	AvgDollarVolume ≠ 0

10, otherwise

min

Minute
k	=	\left\{	\begin{array}{	c	l	}	\frac{6,000,000}
{AvgDollarVolume},&	\text{if	}	AvgDollarVolume	\neq
0\\	10,	&	\text{otherwise}	\end{array}	\right.	\min(120,
\max(1,	k))	\in	[1,	120]	\text{	minutes}

Hour 1	hour

Daily 1	day

Only	a	fraction	of	the	market	capacity	dollar	volume	is	available	to	be	taken	by	a	strategy’s	orders	because	there	are

other	market	participants.	The	data	resolution	of	the	security	determines	how	much	of	the	market	capacity	dollar

volume	is	available	for	the	strategy	to	consume.	The	following	table	shows	what	percentage	of	the	market	capacity

dollar	volume	is	available	for	each	of	the	data	resolutions:

Resolution Available	Portion	of	Market	Capacity	Dollar
Volume	(%)

Daily 2

Hour 5

Minute 20

Second 50

Tick 50

Fast	Trading	Volume	Discount	Factor

To	accommodate	high-frequency	trading	strategies,	the	 	variable	scales	down	the

market	capacity	dollar	volume	of	the	security	proportional	to	the	number	of	trades	that	it	places	per	day	for	the

security.	The	more	frequently	the	strategy	trades	a	security,	the	lower	the	capacity	of	the	security	goes	since	it

becomes	harder	to	get	into	a	larger	position	without	incurring	significant	market	impact.	The	formula	that	LEAN	uses

to	discount	the	capacity	of	the	securities	that	the	algorithm	trades	intraday	is

d_i	=	\left\{	\begin{array}{	c	l	}	1,&	\text{if	}	i	=	1\\	\min(1,	\max(0.2,	d_{i-1}	*	\frac{m}{390})),	&	\text{if	}	i	>	1
\end{array}	\right.

where	d_i\in{[0.2,	1]}	is	the	fast	trading	volume	discount	factor	after	order	i	and	m	is	the	number	of	minutes	since

order	i-1	was	filled.	We	divide	m	by	390	because	there	are	390	=	6.5	*	60	minutes	of	trading	in	a	regular	Equity	trading

day.

Sale	Volume

In	addition	to	the	market	capacity	dollar	volume,	for	each	security	the	strategy	trades,	LEAN	also	accumulates	the

{

weekly	sale	volume	of	the	order	fills.	The	sale	volume	scales	down	the	weekly	snapshot	capacity.

Portfolio	Capacity

Now	that	we	have	the	values	to	calculate	the	capacity	of	each	security,	we	can	compute	the	capacity	of	the	portfolio.

Snapshot	Capacity

To	calculate	the	strategy	capactiy,	weekly	snapshots	are	taken.	When	it’s	time	to	take	a	snapshot,	the	capacity	of	the

strategy	for	the	current	snapshot	is	calculated	by	first	selecting	the	security	with	the	least	market	capacity	dollar

volume	available.	The	fraction	of	trading	volume	that	was	available	for	this	security	is	scaled	down	by	the	number	of

orders	that	were	filled	for	the	security	during	the	week.	The	result	is	scaled	down	further	by	the	largest	value	between

the	weight	of	the	security’s	sale	volume	in	the	portfolio	sale	volume	and	the	weight	of	the	security’s	holding	value	in	the

total	portfolio	value.	The	result	of	this	final	scaling	is	the	strategy’s	capacity	in	the	current	snapshot.

Snapshot	\	Capacity	=	\frac{\frac{Market	\	Capacity	\	Dollar	\	Volume}{Number	\	Of	\	Trades}}{\max(\frac{Sale	\
Volume}{Portfolio	\	Sale	\	Volume},	\frac{Buying	\	Power	\	Used}{Total	\	Portfolio	\	Value})}

When	any	of	the	denominators	are	0	in	the	preceding	formula,	the	quotient	that	the	denominator	is	part	of	defaults	to	a

value	of	0.	After	the	snapshot	is	taken,	the	sale	volume	and	market	capacity	dollar	volume	of	each	security	is	reset	to	0.

Strategy	Capacity

Instead	of	using	the	strategy’s	capacity	at	the	current	snapshot	as	the	final	strategy	capacity	value,	the	strategy

capacity	is	smoothed	across	the	weekly	snapshots.	First,	the	capacity	estimate	of	the	current	snapshot	is	calculated,

then	the	final	strategy	capacity	value	is	set	using	the	following	exponentially-weighted	model:

Strategy	\	Capacity	=	\left\{	\begin{array}{	c	l	}	S_{i},&	\text{if	}	i	=	1\\	0.66	*	S_{i-1}	+	0.33	*	S_{i},	&	\text{if	}	i	>
1	\end{array}	\right.

where	S_i	is	the	snapshot	capacity	of	week	i.

Summary

Strategies	that	have	a	larger	capacity	are	able	to	trade	more	capital	without	suffering	from	significant	market	impact.

In	general,	a	strategy	that	trades	a	large	weight	of	the	portfolio	in	liquid	securities	with	high	volume	will	have	a	large

capacity.	To	avoid	reducing	the	strategy	capacity	too	much,	only	trade	a	small	portion	of	your	portfolio	in	illiquid	assets

with	low	volume.

	

Class	Reference

Class	Reference

{	"type":	"link",	"heading":	"Class	Reference",	"subHeading":	"",	"content":	"",	"alsoLinks":	[],	"href":

"https://www.lean.io/docs/v2/lean-engine/class-reference/"	}

	

Processing	math:	12%

Processing	math:	12%

